Square Identities
$$\cos^2\theta+\sin^2\theta=1$$
$$1+\tan^2\theta=\sec^2\theta$$
$$1+\cot^2\theta=\csc^2\theta$$
$$\sin^2\theta=1-\cos^2\theta=\frac{1-\cos2\theta}{2}$$
$$\cos^2\theta=1-\sin^2\theta=\frac{1+\cos2\theta}{2}$$
Sum and Difference Identities
$$\cos(A\pm B)=\cos A\cos B\mp\sin A\sin B$$
$$\sin(A\pm B)=\sin A\cos B\pm\cos A\sin B$$
$$\tan(A\pm B)=\frac{\tan A\pm\tan B}{1\mp\tan A\tan B}$$
Double Angle Identities
$$\cos2A=\cos^2A-\sin^2A=2\cos^2A-1=1-2\sin^2A$$
$$\sin2A=2\sin A\cos A$$
$$\tan2A=\frac{2\tan A}{1-\tan^2A}$$
Half Angle Identities
$$\cos\tfrac{A}{2}=\pm\sqrt{\frac{1+\cos A}{2}}$$
$$\sin\tfrac{A}{2}=\pm\sqrt{\frac{1-\cos A}{2}}$$
$$\tan\tfrac{A}{2}=\pm\sqrt{\frac{1-\cos A}{1+\cos A}}=\frac{1-\cos A}{\sin A}=\frac{\sin A}{1+\cos A}$$
Cofunction Identities
$$\cos(\tfrac{\pi}{2}-A)=\sin A$$
$$\sin(\tfrac{\pi}{2}-A)=\cos A$$
$$\tan(\tfrac{\pi}{2}-A)=\cot A$$
$$\cot(\tfrac{\pi}{2}-A)=\tan A$$
$$\sec(\tfrac{\pi}{2}-A)=\csc A$$
$$\csc(\tfrac{\pi}{2}-A)=\sec A$$
Negative Angle Identities
$$\cos(-\theta)=\cos(\theta)$$
$$\sin(-\theta)=-1\cdot\sin(\theta)$$
$$\tan(-\theta)=-1\cdot\tan(\theta)$$
$$\cot(-\theta)=-1\cdot\cot(\theta)$$
$$\csc(-\theta)=-1\cdot\csc(\theta)$$
$$\sec(-\theta)=\sec(\theta)$$
Reinmann Sum
$$A=\displaystyle \lim_{ n\to \infty}\sum_{i=1}^{n}f(x_{i})\Delta x$$
$$where: \Delta x=\frac{b-a}{n}$$
Power Sums
$$\sum_{i=1}^{n}1=n$$
$$\sum_{i=1}^{n}i=\frac{n(n+1)}{2}$$
$$\sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6}$$
$$\sum_{i=1}^{n}i^3=\left [ \frac{n(n+1)}{2} \right ]^2$$
Derivatives of Trig Functions
$$\frac{\mathrm{d} }{\mathrm{d} x}\sin x=\cos x$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\cos x=-\sin x$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\tan x=\sec^2x$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\csc x=-\csc x\cot x$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\sec x=\sec x\tan x$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\cot x=-\csc^2x$$
Derivatives of Inverse Trig Functions
$$\frac{\mathrm{d} }{\mathrm{d} x}\sin^{-1}x=\frac{1}{\sqrt{1-x^2}}$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\cos^{-1}x=-\frac{1}{\sqrt{1-x^2}}$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\tan^{-1}x=\frac{1}{{1+x^2}}$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\cot^{-1}x=-\frac{1}{{1+x^2}}$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\sec^{-1}x=\frac{1}{x\sqrt{x^2-1}}$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\csc^{-1}x=-\frac{1}{x\sqrt{x^2-1}}$$
Integration by Parts
$$\int_{}^{}udv=uv-\int_{}^{}vdu$$
Vectors
$$\vec{A}=\vec{A}_xi+\vec{A}_yj+\vec{A}_zk$$
$$A^2=\mathrm{A}_{x}^{2}+\mathrm{A}_{y}^{2}+\mathrm{A}_{z}^{2}$$
$$\vec{A}\cdot \vec{B}=AB\cos\theta$$
$$\vec{A}\cdot \vec{B}=A_xB_x+A_yB_y+A_zB_z$$
$$\left|\vec{A}\times\vec{B}\right|=AB\sin\theta$$
$$\vec{A}\times\vec{B}=(A_yB_z-B_yA_z)i+(A_zB_x-B_zA_x)j+(A_xB_y-B_xA_y)k$$
Kinematics
$$\vec{r}=\vec{r}_0+\vec{v}_0t+\tfrac{1}{2}\vec{a}t^2$$
$$\Delta x=\tfrac{1}{2}(v_0+v)t$$
$$\vec{v}=\vec{v}_0+\vec{a}t$$
$$v_x^2=v_{x0}^2+2a_x(x-x_0)$$
$$\vec{v}=\frac{d\vec{r}}{dt}$$
$$\vec{a}=\frac{d\vec{v}}{dt}$$
Force
$$\Sigma\vec{F}=m\vec{a}$$
$$F_g=mg$$
$$F_{sp}=-kx$$
Work and Power
$$W=F_x\Delta x$$
$$W=\vec{F}\cdot\Delta\vec{r}$$
$$W=\int_{\vec{r_1}}^{\vec{r_2}}\vec{F}\cdot d\vec{r}$$
$$P=\frac{dW}{dt}=\vec{F}\cdot\vec{v}$$
$$P=\frac{dE}{dt}$$
$$W_{net}=\Delta K$$
$$W_{nc}=\Delta E$$
Energy Conservation
$$K=\tfrac{1}{2}mv^2$$
$$W_{net}=\Delta K$$
$$W_{nc}=\Delta E$$
$$\Delta U=-\int_{A}^{B}\vec{F}\cdot d\vec{r}$$
$$\Delta U_g=mgh$$
$$U_{sp}=\tfrac{1}{2}kx^2$$