Vectors
$$\vec{A}=\vec{A}_xi+\vec{A}_yj+\vec{A}_zk$$
$$A^2=\mathrm{A}_{x}^{2}+\mathrm{A}_{y}^{2}+\mathrm{A}_{z}^{2}$$
$$\vec{A}\cdot \vec{B}=AB\cos\theta$$
$$\vec{A}\cdot \vec{B}=A_xB_x+A_yB_y+A_zB_z$$
$$\left|\vec{A}\times\vec{B}\right|=AB\sin\theta$$
$$\vec{A}\times\vec{B}=(A_yB_z-B_yA_z)\hat{i}+(A_zB_x-B_zA_x)\hat{j}+(A_xB_y-B_xA_y)\hat{k}$$