Kinematics
$$\vec{r}=\vec{r}_0+\vec{v}_0t+\tfrac{1}{2}\vec{a}t^2$$ $$\Delta x=\tfrac{1}{2}(v_0+v)t$$ $$\vec{v}=\vec{v}_0+\vec{a}t$$ $$v_x^2=v_{x0}^2+2a_x(x-x_0)$$ $$\vec{v}=\frac{d\vec{r}}{dt}$$ $$\vec{a}=\frac{d\vec{v}}{dt}$$
Force
$$\Sigma\vec{F}=m\vec{a}$$ $$F_g=mg$$ $$F_{sp}=-kx$$
Work and Power
$$W=F_x\Delta x$$ $$W=\vec{F}\cdot\Delta\vec{r}$$ $$W=\int_{\vec{r_1}}^{\vec{r_2}}\vec{F}\cdot d\vec{r}$$ $$P=\frac{dW}{dt}=\vec{F}\cdot\vec{v}$$ $$P=\frac{dE}{dt}$$ $$W_{net}=\Delta K$$ $$W_{nc}=\Delta E$$
Energy Conservation
$$K=\tfrac{1}{2}mv^2$$ $$W_{net}=\Delta K$$ $$W_{nc}=\Delta E$$ $$\Delta U=-\int_{A}^{B}\vec{F}\cdot d\vec{r}$$ $$\Delta U_g=mgh$$ $$U_{sp}=\tfrac{1}{2}kx^2$$
Impulse
$$\vec{J}=\int_{t_1}^{t_2}\vec{F}(t)dt$$ $$\vec{J}=\vec{F}_{avg}\Delta t$$ $$\vec{J}_{net}=\Delta\vec{p}$$
Momentum
$$\vec{p}=m\vec{v}$$ $$\vec{p}=\sum_{i=1}^{n}\vec{p}_i$$
Rotational Kinematics
$$\theta=\theta_0+\omega_0t+\tfrac{1}{2}\alpha t^2$$ $$s=r\theta$$ $$\omega=\omega_0+\alpha t$$ $$\omega^2=\omega_0^2+2\alpha(\theta-\theta_0)$$ $$\omega=2\pi\mathcal{f}$$ $$T=\frac{2\pi r}{v}=\frac{2\pi}{\omega}$$ $$v=r\omega$$ $$\alpha_{tan}=\alpha r$$ $$\mathcal{f}=\frac{1}{T}$$ $$\omega=\frac{d\theta}{dt}$$ $$\alpha=\frac{d\omega}{dt}$$