Kinematics
$$\vec{r}=\vec{r}_0+\vec{v}_0t+\tfrac{1}{2}\vec{a}t^2$$ $$\Delta x=\tfrac{1}{2}(v_0+v)t$$ $$\vec{v}=\vec{v}_0+\vec{a}t$$ $$v_x^2=v_{x0}^2+2a_x(x-x_0)$$ $$\vec{v}=\frac{d\vec{r}}{dt}$$ $$\vec{a}=\frac{d\vec{v}}{dt}$$
Force
$$\Sigma\vec{F}=m\vec{a}$$ $$F_g=mg$$ $$F_{sp}=-kx$$
Work and Power
$$W=F_x\Delta x$$ $$W=\vec{F}\cdot\Delta\vec{r}$$ $$W=\int_{\vec{r_1}}^{\vec{r_2}}\vec{F}\cdot d\vec{r}$$ $$P=\frac{dW}{dt}=\vec{F}\cdot\vec{v}$$ $$P=\frac{dE}{dt}$$ $$W_{net}=\Delta K$$ $$W_{nc}=\Delta E$$
Energy Conservation
$$K=\tfrac{1}{2}mv^2$$ $$W_{net}=\Delta K$$ $$W_{nc}=\Delta E$$ $$\Delta U=-\int_{A}^{B}\vec{F}\cdot d\vec{r}$$ $$\Delta U_g=mgh$$ $$U_{sp}=\tfrac{1}{2}kx^2$$