Kinematics
$$\vec{r}=\vec{r}_0+\vec{v}_0t+\tfrac{1}{2}\vec{a}t^2$$
$$\Delta x=\tfrac{1}{2}(v_0+v)t$$
$$\vec{v}=\vec{v}_0+\vec{a}t$$
$$v_x^2=v_{x0}^2+2a_x(x-x_0)$$
$$\vec{v}=\frac{d\vec{r}}{dt}$$
$$\vec{a}=\frac{d\vec{v}}{dt}$$
Force
$$\Sigma\vec{F}=m\vec{a}$$
$$F_g=mg$$
$$F_{sp}=-kx$$
Work and Power
$$W=F_x\Delta x$$
$$W=\vec{F}\cdot\Delta\vec{r}$$
$$W=\int_{\vec{r_1}}^{\vec{r_2}}\vec{F}\cdot d\vec{r}$$
$$P=\frac{dW}{dt}=\vec{F}\cdot\vec{v}$$
$$P=\frac{dE}{dt}$$
$$W_{net}=\Delta K$$
$$W_{nc}=\Delta E$$
Energy Conservation
$$K=\tfrac{1}{2}mv^2$$
$$W_{net}=\Delta K$$
$$W_{nc}=\Delta E$$
$$\Delta U=-\int_{A}^{B}\vec{F}\cdot d\vec{r}$$
$$\Delta U_g=mgh$$
$$U_{sp}=\tfrac{1}{2}kx^2$$
Impulse
$$\vec{J}=\int_{t_1}^{t_2}\vec{F}(t)dt$$
$$\vec{J}=\vec{F}_{avg}\Delta t$$
$$\vec{J}_{net}=\Delta\vec{p}$$
Momentum
$$\vec{p}=m\vec{v}$$
$$\vec{p}=\sum_{i=1}^{n}\vec{p}_i$$
Rotational Kinematics
$$\theta=\theta_0+\omega_0t+\tfrac{1}{2}\alpha t^2$$
$$s=r\theta$$
$$\omega=\omega_0+\alpha t$$
$$\omega^2=\omega_0^2+2\alpha(\theta-\theta_0)$$
$$\omega=2\pi\mathcal{f}$$
$$T=\frac{2\pi r}{v}=\frac{2\pi}{\omega}$$
$$v=r\omega$$
$$\alpha_{tan}=\alpha r$$
$$\mathcal{f}=\frac{1}{T}$$
$$\omega=\frac{d\theta}{dt}$$
$$\alpha=\frac{d\omega}{dt}$$