Square Identities
$$\cos^2\theta+\sin^2\theta=1$$
$$1+\tan^2\theta=\sec^2\theta$$
$$1+\cot^2\theta=\csc^2\theta$$
$$\sin^2\theta=1-\cos^2\theta=\frac{1-\cos2\theta}{2}$$
$$\cos^2\theta=1-\sin^2\theta=\frac{1+\cos2\theta}{2}$$
Sum and Difference Identities
$$\cos(A\pm B)=\cos A\cos B\mp\sin A\sin B$$
$$\sin(A\pm B)=\sin A\cos B\pm\cos A\sin B$$
$$\tan(A\pm B)=\frac{\tan A\pm\tan B}{1\mp\tan A\tan B}$$
Double Angle Identities
$$\cos2A=\cos^2A-\sin^2A=2\cos^2A-1=1-2\sin^2A$$
$$\sin2A=2\sin A\cos A$$
$$\tan2A=\frac{2\tan A}{1-\tan^2A}$$
Half Angle Identities
$$\cos\tfrac{A}{2}=\pm\sqrt{\frac{1+\cos A}{2}}$$
$$\sin\tfrac{A}{2}=\pm\sqrt{\frac{1-\cos A}{2}}$$
$$\tan\tfrac{A}{2}=\pm\sqrt{\frac{1-\cos A}{1+\cos A}}=\frac{1-\cos A}{\sin A}=\frac{\sin A}{1+\cos A}$$
Cofunction Identities
$$\cos(\tfrac{\pi}{2}-A)=\sin A$$
$$\sin(\tfrac{\pi}{2}-A)=\cos A$$
$$\tan(\tfrac{\pi}{2}-A)=\cot A$$
$$\cot(\tfrac{\pi}{2}-A)=\tan A$$
$$\sec(\tfrac{\pi}{2}-A)=\csc A$$
$$\csc(\tfrac{\pi}{2}-A)=\sec A$$
Negative Angle Identities
$$\cos(-\theta)=\cos(\theta)$$
$$\sin(-\theta)=-1\cdot\sin(\theta)$$
$$\tan(-\theta)=-1\cdot\tan(\theta)$$
$$\cot(-\theta)=-1\cdot\cot(\theta)$$
$$\csc(-\theta)=-1\cdot\csc(\theta)$$
$$\sec(-\theta)=\sec(\theta)$$
Derivatives of Trig Functions
$$\frac{\mathrm{d} }{\mathrm{d} x}\sin x=\cos x$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\cos x=-\sin x$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\tan x=\sec^2x$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\csc x=-\csc x\cot x$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\sec x=\sec x\tan x$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\cot x=-\csc^2x$$
Derivatives of Inverse Trig Functions
$$\frac{\mathrm{d} }{\mathrm{d} x}\sin^{-1}x=\frac{1}{\sqrt{1-x^2}}$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\cos^{-1}x=-\frac{1}{\sqrt{1-x^2}}$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\tan^{-1}x=\frac{1}{{1+x^2}}$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\cot^{-1}x=-\frac{1}{{1+x^2}}$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\sec^{-1}x=\frac{1}{x\sqrt{x^2-1}}$$
$$\frac{\mathrm{d} }{\mathrm{d} x}\csc^{-1}x=-\frac{1}{x\sqrt{x^2-1}}$$